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Abstract
The phase structure of the layered sine-Gordon (LSG) model is investigated in
terms of symmetry considerations by means of a differential renormalization
group (RG) method, within the local potential approximation. The RG analysis
of the general N-layer model provides us with the possibility of considering the
dependence of the vortex dynamics on the number of layers. The Lagrangians
are distinguished according to the number of zero eigenvalues of their mass
matrices. The number of layers is found to be decisive with respect to the
phase structure of the N-layer models, with neighbouring layers being coupled
by terms quadratic in the field variables. It is shown that the LSG model with
N layers undergoes a Kosterlitz–Thouless-type phase transition at the critical
value of the parameter β2

c = 8Nπ . In the limit of infinitely many layers the LSG
model can be considered as the discretized version of the three-dimensional
sine-Gordon model which has been shown to have a single phase within the
local potential approximation. The infinite critical value of the parameter β2

c
for the LSG model in the continuum limit (N → ∞) is consistent with the
latter observation.

PACS numbers: 11.10.Hi, 11.10.Gh, 11.10.Kk

1. Introduction

The renormalization of sine-Gordon (SG) type models represents a challenge in quantum
field theory, where the usual strategies are based on the Taylor expansion of the interaction
Lagrangian. However, in the case of an SG-type scalar field theory where the self-interaction is
given by a periodic term (periodic in the field variable), any truncation of the Taylor expansion
of the potential violates the essential symmetry of the model. As is well known, the phase
structure of the system crucially depends on the symmetries of the interaction Lagrangian in
the field variable. Therefore, in order to obtain the low-energy effective theory and to map out
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the phase structure of an SG-type model, one has to use a method which retains the periodicity
of the system.

The phase structure of the ‘pure’ SG model which is periodic in the internal space spanned
by the field variable has been investigated in great detail [1–3], and as it is well known, the
model has two phases separated by the critical value of the parameter, β2

c = 8π [4, 5].
Another interesting subject concerns the ‘massive’ SG model [6, 7] where the periodicity is
broken by the explicit mass term of the Lagrangian. The massive SG model has a single
phase; all the coupling constants of the model are relevant parameters independently of β. It
is an interesting subject to consider an SG-type theory which combines the ‘features’ of the
massless and massive SG models where the periodicity is broken only partially. The following
generalization of the SG model which is called the layered sine-Gordon (LSG) model [7, 8]
belongs to the latter category,

LLSG = 1

2

N∑
i=1

(∂ϕi)
2 +

1

2
J

N−1∑
i=1

(ϕi+1 − ϕi)
2 + U(ϕ1, . . . , ϕN), (1)

where each ϕi is a one-component Lorentz scalar field and the second term corresponds to
the coupling between the SG models (i.e. layers). U(ϕ1, . . . , ϕN) is assumed to be periodic
but the periodicity is broken (partially) by the interlayer coupling terms. The LSG model has
relevance in high-energy and low-temperature physics. The sine-Gordon model with N layers
can be considered as the bosonized version of the N-flavour Schwinger model [7]. Another
suitable generalization of the SG model is the SU(N) Thirring model [9, 10]. The LSG
model with N = 2 layers has been used to describe the vortex dominated properties of high-Tc

superconductors which have a layered structure [11, 12].
Recently, the LSG model with two coupled layers has been analysed in the framework

of the non-perturbative Wegner–Houghton (WH) renormalization group (RG) method which
retains the periodicity of the model [13]. The WH–RG approach [14] is incompatible with
the derivative expansion due to the sharp momentum cutoff used. However, it represents one
of the most straightforward implementations of a functional RG method. As such, it is a
rather powerful tool for the analysis of the RG flow of theories with periodic self-interactions,
including situations with more than one interacting field and the higher harmonics which may
be generated during the RG evolution for periodic self-interactions. The WH–RG method
provides us with a suitable tool for the investigation of the phase structure of these periodic
field theories. In this paper, we would like to present a further contribution to the study of
related models by means of the WH–RG method performed for the LSG model with N layers.

We present an explicit rotation in the internal space of the field variables, which allows
us to decompose the Lagrangians into ‘periodic’ and ‘non-periodic’ fields. In this paper we
refer to a field variable whose self-interaction is characterized by a periodic function with and
without an explicit symmetry breaking mass term as a ‘non-periodic’ and ‘periodic’ mode,
respectively.

The purpose of this rotation is twofold. First, we would like to compare the result of our
RG analysis to that of the perturbative treatment discussed in [15] where the rotated N-layer
SG model is studied. In the infrared (IR) region, with k � M (with M being the mass
eigenvalue and k is the momentum cutoff), it is allowed to use perturbation theory but only
for the non-periodic modes [16]. Second, by using the rotation we would like to demonstrate
that the internal symmetry in the field variable is decisive for the phase structure of the LSG
model.

The non-periodic modes have a trivial tree-level scaling, which is consistent with the
explicit breaking of the internal periodicity in the field variable. In the limit of a vanishing
interlayer coupling J , the coupled N-layer model approaches the sum of N decoupled
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sine-Gordon models, each of which has a Kosterlitz–Thouless-type phase transition at the
critical value β2

c = 8π (see [1–3, 5]). For an N-layer model with a non-vanishing coupling
J , we show here that there exists exactly one periodic mode which has two types of scaling
behaviour separated by the critical value β2

c = 8Nπ where N is the number of layers.
Our paper is organized as follows. In section 2, we define the layered SG model and

discuss the connection to the two-dimensional (2D) and three-dimensional (3D) SG models.
We then give basic relations used for the Wegner–Houghton RG method [14] and derive the
mass-corrected ultraviolet (UV) WH–RG equation in section 3. In section 4, the flavour-
doublet and in section 5, the flavour-triplet LSG models are analysed by means of the UV
mass-corrected WH–RG method in detail. The generalization to N layers is also studied. In
section 6, the UV-RG evolution of the 3D-SG model is investigated and compared to that of
the LSG model with N layers. Finally, we conclude with a summary in section 7.

2. Layered sine-Gordon model

The LSG model belongs to a wider class of massive SG-type theories due to the interlayer
coupling which can be considered as a mass term. In general, the bare Lagrangian for the
massive SG model with N layers is [13, 15]

L = 1

2

N∑
i=1

(∂ϕi)
2 +

1

2

N∑
i,j

ϕiM
2
i,j ϕj + U(ϕ1, . . . , ϕN), (2)

where ϕi is a one-component scalar field, the theory is constructed in d = 2 dimensions in
Euclidean metric and the periodic self-interaction is given by the term

U(ϕ1, . . . , ϕN) = U

(
ϕ1 +

2π

β1
, . . . , ϕN +

2π

βN

)
. (3)

The model has a global Z(2) discrete symmetry ϕi → −ϕi . By applying an orthogonal
transformation on the flavour multiplet (ϕ1, ϕ2, . . . , ϕN), the massive SG model transforms
into a similar one with transformed period lengths in the internal space. Since the global
O(N) rotation does not mix the field fluctuations with different momenta, the scaling laws
and the phase structure should be the same for all the rotated models.

The mass matrix M2
ij (i, j = 1, 2, . . . , N) is symmetric and positive semidefinite and

assumed to have a special ‘interlayer’ structure,

L = 1

2

N∑
i=1

(∂ϕi)
2 +

1

2

N∑
i=1

M2
i ϕ2

i +
1

2
J

N−1∑
i=1

(ϕi+1 − ϕi)
2 + U(ϕ1, . . . , ϕN), (4)

where the explicit mass terms are M2
i (i = 1, . . . , N) and J describes the interaction between

the layers. Since the layers are assumed to be equivalent M2
i ≡ M2 for i = 1, . . . , N is

a natural choice. The symmetries and phase structure of the massive SG model (4) with
N = 2 layers have already been discussed in [13]. It was demonstrated that the number of
zero eigenvalues of the mass matrix is found to be decisive with respect to the phase structure
of the model. The mass eigenvalues of the layered system (4) for N = 2, 3, 4 layers are
[M2, 2J +M2], [M2, J +M2, 3J +M2] and [M2, 2J +M2, (2+

√
2)J +M2, (2−√

2)J +M2],
respectively. Consequently, for vanishing explicit masses (M2 = 0) the layered model
has always a single zero mass eigenvalue and as it was shown for the (N = 2)-layer case, it
undergoes a phase transition. This can also be understood in terms of symmetry considerations.
In the presence (absence) of explicit mass terms the periodic symmetry of the layered model
(4) is broken entirely (partially). In this paper we would like to clarify this general statement
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by considering the phase structure of the N-layer SG model by means of the differential RG
approach.

For vanishing explicit mass terms (M2 = 0) the Lagrangian (4) takes the form of
equation (1),

LNLSG = 1

2

N∑
i=1

(∂ϕi)
2 +

1

2
J

N−1∑
i=1

(ϕi+1 − ϕi)
2 + U(ϕ1, . . . , ϕN), (5)

with βi = β (for i = 1, 2, . . . , N). The LSG model with N = 2 layers has been proposed as an
adequate description of the vortex dominated properties of strongly anisotropic high transition
temperature superconductors which have a layered structure. In this case the periodic term
has a simple structure

L2LSG = 1

2

2∑
i=1

(∂ϕi)
2 +

1

2
J (ϕ2 − ϕ1)

2 + u[cos(βϕ1) + cos(βϕ2)], (6)

where u corresponds to the fugacity parameter of the vortex system, β is related to the
temperature and the second term describes the weak Josephson coupling between the
superconducting layers [11].

Finally, we would like to demonstrate that in the limit N → ∞ the LSG model can
be considered as the discretized version of the 3D-SG model. The 3D-SG model has the
following action:

S =
∫

d3r

[
1

2
(∂µϕ3D)2 + u3D cos(β3Dϕ3D)

]
, (7)

where ϕ3D ≡ ϕ3D(x, y, z) is a one-component scalar field and β3D, u3D are the dimensionful
parameters of the theory. The model is constructed in d = 3 spatial dimensions with an
Euclidean metric. The anisotropic 3D-SG model reads

S =
∫

d3r

[
1

2β2
‖

[(∂xθ)2 + (∂yθ)2] +
1

2β2
⊥

(∂zθ)2 + u3D cos(θ)

]
, (8)

where θ = ϕ3Dβ3D is introduced. In the isotropic limit β‖ = β⊥ ≡ β3D is assumed. Rescaling
the field � = θ/β‖, the action (8) becomes

S =
∫

d3r

[
1

2
[(∂x�)2 + (∂y�)2] +

β2
‖

2β2
⊥

(∂z�)2 + u3D cos(β‖�)

]
. (9)

In the case of very strong anisotropy, the continuous derivation and the integration in the
z-direction is replaced by finite difference and summation, respectively,

∂z�(x, y, z) → �(x, y, z + s) − �(x, y, z)

s
,

∫
dz →

N∑
z=1

s, (10)

where s is the interlayer distance. Using this discretization, one arrives at the LSG model with
N layers,

S =
∫

d2r

[
1

2

N∑
i=1

(∂ϕi)
2 +

1

2
J

N−1∑
i=1

(ϕi+1 − ϕi)
2 + u

N∑
i=1

cos(βϕi)

]
, (11)

where ϕi(x, y) ≡ √
s�(x, y, z = i), J ≡ β2

‖
/(

β2
⊥s2

)
, β ≡ β‖/

√
s and u ≡ su3D are

introduced. Therefore, in the continuum limit N → ∞ the LSG model can be considered
as the discretized version of the 3D-SG model and for N = 1 the LSG model reduces to the
2D-SG model.
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3. Wegner–Houghton renormalization group method

In order to map out the phase structure of the layered system, we perform an RG analysis for
the layered SG model by means of the differential RG approach in momentum space where
the blocking transformations are realized by successive elimination of the field fluctuations
according to their decreasing momentum in infinitesimal steps [17]. The high-frequency
modes are integrated out above the moving momentum cutoff k and the physical effects of
the eliminated modes are encoded in the scale dependence of the coupling constants. The
elimination of the modes above the moving scale k is complete in Wegner’s and Houghton’s
method (WH–RG) [14] because of the sharp momentum cutoff. The WH method provides a
functional RG equation for the blocked action. In order to solve the WH–RG equation, one
has to project it to a particular functional subspace. Therefore, one generally assumes that the
blocked action contains only local interactions; then let us expand it in powers of the gradient
of the field and truncate this expansion at a given order, for technical reasons [18]. Here
we restrict ourselves to the leading order of the gradient expansion, i.e. to the local-potential
approximation (LPA). The blocked action for the LSG model with N layers reads

Sk =
∫

d2x

[
1

2

N∑
i=1

(∂ϕi)
2 + Vk(ϕ1, . . . , ϕN)

]
, (12)

where k is the running momentum cutoff and Vk(ϕ1, . . . , ϕN) is the blocked potential which
has the following form:

Vk(ϕ1, . . . , ϕN) = 1

2
ϕTM2

k
ϕ + Uk(ϕ1, . . . , ϕN), (13)

where Uk is the periodic part of the blocked potential and M2
k

represents the scale-dependent
mass matrix. Note that the momentum scale dependence is encoded in the coupling constants
of the model. The WH–RG equation in LPA has been derived for two interacting scalar
fields in [13, 19]. The generalization for the N-layer SG model is straightforward and can be
written as

k∂kVk(ϕ1, . . . , ϕN) = − k2

4π
ln

(
det

[
δij k

2 + V
ij

k

]
k2N

)
, (14)

where δij is the Kronecker delta, V
ij

k = ∂ϕi
∂ϕj

Vk(ϕ1, . . . , ϕN) is the second derivative of
the dimensionful blocked potential with respect to the field variables. We then introduce
dimensionless parameters in order to remove the trivial scale dependence of the coupling
constants. The WH–RG equation in LPA for the dimensionless blocked potential reads

(2 + k∂k)Ṽ k(ϕ1, . . . , ϕN) = − 1

4π
ln

(
det

[
δij + Ṽ

ij

k

])
, (15)

where Ṽ k = k−2Vk is introduced. All dimensionless quantities will be denoted with a tilde
superscript in the following. We recall that in d = 2 dimensions the scalar fields carry no
physical dimension, so that ϕi = ϕ̃i and hence β = β̃.

Inserting the dimensionless form of the ansatz (13) into the WH–RG equation (15), the
right-hand side turns out to be periodic, while the left-hand side contains both periodic and
non-periodic parts. The non-periodic part contains the mass term and we obtain the trivial
tree-level evolution for the dimensionless mass parameters M̃2

ij (k),

M̃2
ij (k) = M̃2

ij (�)

(
k

�

)−2

, (16)
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where M̃2
ij (�) is the initial value for the mass term at the UV momentum cutoff �. Therefore,

the dimensionful mass terms have no evolution, i.e. M2
ij are scale independent. The RG flow

equation

(2 + k∂k)Ũ k(ϕ1, . . . , ϕN) = − 1

4π
ln

(
det

[
δij + Ṽ

ij

k

])
(17)

stands for the dimensionless periodic piece of the blocked potential.
In order to obtain the scale dependence of the coupling constants, one has to solve the

differential equation (17) which can be done only numerically. However, analytic solutions
are available by considering asymptotic approximations of equation (17). In the case of the
UV approximation, the potential is assumed to be much smaller then the momentum cutoff k
and the logarithm can be linearized in equation (17). In order to obtain reliable UV scaling
laws which can be used to determine the phase structure of the layered model, one has to
incorporate the effect of the mass terms (coupling between the layers). Therefore, one should
use the ‘mass-corrected’ UV approximation of equation (17) which has been discussed in [13].
We briefly summarize here the derivation of the mass-corrected UV-RG where the argument
of the logarithm is expanded in powers of Ũ k ,

det
[
δij + Ṽ

ij

k

] ≈ C + F1(Ũ k) + F2
(
Ũ 2

k

)
+ · · · , (18)

where C contains field-independent terms, F1(Ũ k) and F2
(
Ũ 2

k

)
represent the linear and

quadratic terms in the periodic part of the potential. Deriving the WH–RG equation (17)
with respect to one of the field variables and inserting the expanded form of the potential into
it, the WH–RG equation (17) becomes

(2 + k∂k)
d

dϕ1
Ũ k(ϕ1, . . . , ϕN) = − 1

4π

d
dϕ1

[
F1(Ũ k) + O

(
Ũ 2

k

)]
C + F1(Ũ k) + O

(
Ũ 2

k

) . (19)

Since the constant term C is field independent, equation (19) can be rewritten as

(2 + k∂k)
d

dϕ1
Ũ k(ϕ1, . . . , ϕN) = − 1

4π

d
dϕ1

[F1(Ũ k)+O(Ũ 2
k)

C

]
1 + F1(Ũ k)+O(Ũ 2

k)

C

. (20)

The mass-corrected UV-RG equation can be achieved by linearizing equation (20) and reads

(2 + k∂k)Ũ k(ϕ1, . . . , ϕN) ≈ − 1

4π

F1(Ũ k)

C
. (21)

4. Flavour-doublet layered sine-Gordon model

4.1. Definition and rotation

In this section we discuss the rotation of the LSG model with N = 2 layers and apply the
mass-corrected UV WH–RG method in order to map out the phase structure of the model.
The ansatz for the blocked potential should preserve all symmetries of the original model at
the UV cutoff scale k = � and should be rich enough to contain all the interactions which are
generated during the RG flow. Therefore, the specialization of equation (1) to the case of two
layers yields

L2LSG = 1

2

2∑
i=1

(∂ϕi)
2 +

1

2
J (ϕ1 − ϕ2)

2

+
∞∑

n,m=0

[unm cos(nβϕ1) cos(mβϕ2) + vnm sin(nβϕ1) sin(mβϕ2)] , (22)
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where the Fourier decomposition of the periodic part has a general form. All couplings unm

and vnm are dimensionful. For N = 2 layers the mass eigenvalues are 0, 2J . The particular
choice of β = 2

√
π for the LSG represents the bosonized version of the two-flavour massive

Schwinger model.
In order to emphasize the symmetries of the LSG model we now apply a rotation of the

field variables described in [15],

ϕ1 → α1 + α2√
2

, ϕ2 → α1 − α2√
2

, (23)

where the periodic part of the blocked potential

Uk(ϕ1, ϕ2) =
∞∑

n,m=0

[unm cos(nβϕ1) cos(mβϕ2) + vnm sin(nβϕ1) sin(mβϕ2)] (24)

has the following rotated form

Uk(α1, α2) =
∞∑

n,m=0

unm + vnm

2
cos

[
(n − m)

β√
2
α1

]
cos

[
(n + m)

β√
2
α2

]

+
∞∑

n,m=0

unm − vnm

2
cos

[
(n + m)

β√
2
α1

]
cos

[
(n − m)

β√
2
α2

]

−
∞∑

n,m=0

unm + vnm

2
sin

[
(n − m)

β√
2
α1

]
sin

[
(n + m)

β√
2
α2

]

+
∞∑

n,m=0

vnm − unm

2
sin

[
(n + m)

β√
2
α1

]
sin

[
(n − m)

β√
2
α2

]
. (25)

The general form of the rotated periodic potential reads

Uk =
∞∑

n,m=0

[fnm cos(nbα1) cos(mbα2) + hnm sin(nbα1) sin(mbα2)], (26)

where the rotated frequency b = β/
√

2. Some identifications read f02 = 1
2 (u11 + v11), f20 =

1
2 (u11 − v11) and f11 = u01 + u10. Finally, the rotated Lagrangian reads

L2LSG = 1
2 (∂α1)

2 + 1
2 (∂α2)

2 + 1
2M2

2 α2
2 + Uk(α1, α2). (27)

Note that the field α1 has no explicit mass term but for α2 the explicit mass M2
2 = J/2

breaks the periodicity. Therefore, the model is disentangled into a ‘periodic’ mode α1 and a
non-periodic field α2.

4.2. Wegner–Houghton RG approach to the rotated flavour-doublet model

The specialization of the dimensionless WH–RG equation (15) for two layers can be
written as

(2 + k∂k)Ṽ k(α1, α2) = − k2

4π
ln

([
1 + Ṽ 11

k

][
1 + Ṽ 22

k

] − [
Ṽ 12

k

]2)
, (28)

where Ṽ
ij

k = ∂αi
∂αj

Ṽ k(α1, α2). Starting with a general form for the dimensionless rotated
blocked potential for the flavour-doublet LSG model

Ṽ k = 1

2
M̃2

2α
2
2 +

∞∑
n,m=0

[f̃ nm cos(nbα1) cos(mbα2) + h̃nm sin(nbα1) sin(mbα2)], (29)
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where f̃ nm = k−2fnm and h̃nm = k−2hnm are the dimensionless coupling constants and
using the ‘mass-corrected’ UV approximation of the WH–RG equation (28), which is based
on equation (21), this reduces to a set of uncoupled differential equations for the coupling
parameters of the model

(2 + k∂k)f̃ nm(k) = 1

4π

k2m2b2 +
(
k2 + M2

2

)
n2b2(

k2 + M2
2

) f̃ nm,

(2 + k∂k)h̃nm(k) = 1

4π

k2m2b2 +
(
k2 + M2

2

)
n2b2(

k2 + M2
2

) h̃nm,

(30)

where the dimensionful mass M2
2 is scale independent. The UV approximated RG flow

equations are decoupled, and their solution can be obtained analytically:

f̃ nm(k) = f̃ nm(�)

(
k2 + M2

2

�2 + M2
2

) m2b2

8π
(

k

�

)−2+ b2n2

4π

,

h̃nm(k) = f̃ nm(�)

(
k2 + M2

2

�2 + M2
2

) m2b2

8π
(

k

�

)−2+ b2n2

4π

.

(31)

Here f̃ nm(�) and h̃nm(�) are the initial conditions at the UV cutoff k = �. Using the
solution (31), one can read off the IR scaling of the various Fourier amplitudes. In the IR limit
(k → 0) all the purely non-periodic modes (n = 0) become relevant, i.e. f̃ 0m ∝ k−2. The
periodic modes f̃ nm and h̃nm (with n > 0) may be relevant or irrelevant, depending on the
value of b2. If b2 > 8π , the RG flow of all the periodic modes tends to zero, and if b2 < 8π ,
there is at least one mode which becomes relevant in the IR limit. We recall that b2 = β2/2.
Therefore, the critical value which separates the two scaling regime of the original LSG model
is β2

c = 16π . We would like to recall that the LSG model with N = 1 layer is the 2D-SG
model with β2

c = 8π . So, in the case of N = 2 layers the critical value is increased compared
to that of the 2D-SG model.

5. Flavour-triplet layered sine-Gordon model

5.1. Definition and rotation

The Lagrangian of the LSG model with N = 3 layers can be written as

L = 1

2

3∑
i=1

(∂ϕi)
2 +

1

2
J

2∑
i=1

(ϕi+1 − ϕi)
2

+
∞∑

n,m,l=−∞
wnml exp (inβϕ1) exp (imβϕ2) exp (ilβϕ3) . (32)

The parameters wnml of the Fourier decomposition are dimensionful quantities. The mass
matrix with eigenvalues (0, J, 3J ) reads explicitly

M2 =

 J −J 0

−J 2J −J

0 −J J


 . (33)

The explicit form of the rotation of the field variables in the case of three layers has the
following structure:

ϕ1 → α1√
3

− α2√
2

+
α3√

6
, ϕ2 → α1√

3
−

√
2α3√
3

, ϕ3 → α1√
3

+
α2√

2
+

α3√
6
. (34)
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For illustrative purposes the transformation of the periodic part of the bare potential is discussed
by taking into account only the fundamental modes. In this case the bare potential has a flavour
symmetry (ϕ1 ←→ ϕ3) and reads

U(ϕ1, ϕ2, ϕ3) = u cos(βϕ1) + u2 cos(βϕ2) + u cos(βϕ3), (35)

where w100 = w001 ≡ u/2 and w010 ≡ u2/2 are introduced. Applying the rotation (34) on the
periodic potential (35) the transformed potential is

U(α1, α2, α3) = u2 cos

(
β√
3
α1

)
cos

(
2β√

6
α3

)

+ 2u cos

(
β√
3
α1

)
cos

(
β√
2
α2

)
cos

(
β√
6
α3

)

+ 2u sin

(
β√
3
α1

)
cos

(
β√
2
α2

)
sin

(
β√
6
α3

)

+ 2u2 cos

(
β√
3
α1

)
sin

(
β√
2
α2

)
sin

(
β√
6
α3

)
. (36)

In general, the rotated form of the blocked periodic potential reads

Uk =
∞∑

n,m,l=−∞
jnml exp

(
inβ√

3
α1

)
exp

(
imβ√

2
α2

)
exp

(
ilβ√

6
α3

)
, (37)

where jnml are the transformed expansion coefficients. The new frequency for the periodic
mode α1 is b1 = β/

√
3. For the two non-periodic modes (with explicit mass terms), the

transformed frequencies read b2 = β/
√

2 and b3 = β/
√

6. After rotation the Lagrangian of
the (N = 3)-layer model is

L3LSG =
3∑

i=1

1

2
(∂αi)

2 +
1

2
M2

2 α2
2 +

1

2
M2

3 α2
3 + Uk(α1, α2, α3), (38)

with mass eigenvalues M2
2 = J and M2

3 = 3J . As in the two-layer case we have decomposed
the three-layer model into one periodic mode α1 and two non-periodic fields α2, α3.

5.2. Wegner–Houghton RG approach to the rotated flavour-triplet model

We generalize the treatment discussed in section 4.2 to the case of three layers by repeating the
same steps as in section 4.2. The rotated dimensionless blocked potential for the flavour-triplet
LSG model is

Ṽ k(α1, α2, α3) = 1

2
M̃2

2α
2
2 +

1

2
M̃2

3α
2
3

+
∞∑

n,m,l=−∞
j̃ nml exp(inb1α1) exp(imb2α2) exp(ilb3α3). (39)

The dimensionless WH–RG equation in d = 2 dimensions, for three fields α1,2,3, reads

(2 + k∂k)Ṽ k = − k2

4π
ln

([
1 + Ṽ 11

k

][
1 + Ṽ 22

k

][
1 + Ṽ 33

k

] − [
1 + Ṽ 22

k

][
Ṽ 13

k

]2 − [
1 + Ṽ 33

k

][
Ṽ 12

k

]2

− [
1 + Ṽ 11

k

][
Ṽ 23

k

]2
+

[
Ṽ 12

k

][
Ṽ 23

k

][
Ṽ 31

k

]
+

[
Ṽ 13

k

][
Ṽ 21

k

][
Ṽ 32

k

])
. (40)

where Ṽ
ij

k = ∂αi
∂αj

Ṽ k(α1, α2, α3) is the second derivative of the dimensionless blocked
potential with respect to the field variables. In order to obtain reliable UV scaling laws which
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Figure 1. We illustrate the schematic RG trajectories of the multi-layer sine-Gordon model
with N = 2, 3, 4 layers in the plane (B2 ≡ β2, u ≡ ũ01) and the shift of the critical value
B2

c (N) ≡ β2
c (N) = 8Nπ . Each layer corresponds to a sine-Gordon model which are coupled by

the coupling J . The solid discs represent the topological excitation of the layered system.

can be used to determine the phase diagram of the LSG model with N = 3 layers one has to
use the mass-corrected UV approximation for the WH–RG equation (40). This reduces to a
set of uncoupled differential equations for the coupling constants of the model

(2 + k∂k)j̃ nml(k) = 1

4π

(
n2b2

1 +
k2m2b2

2

k2 + M2
2

+
k2l2b2

3

k2 + M2
3

)
j̃ nml. (41)

The solution can be obtained analytically,

j̃ nml(k) = j̃ nml(�)

(
k

�

)−2+
b2

1n2

4π
(

k2 + M2
2

�2 + M2
2

) m2b2
2

8π
(

k2 + M2
3

�2 + M2
3

) l2b2
3

8π

, (42)

where j̃ nml(�) is the initial condition at the UV cutoff k = �. In the IR regime (k → 0),
the pure non-periodic modes are relevant (increasing) coupling constants j̃ 0ml ∝ k−2

independently of b2
i . The periodic modes j̃ nml, n > 0 are found to be relevant or irrelevant

couplings depending on the value of b2
1. If b2

1 > 8π , the RG flow of all the periodic modes
tends to zero, and if b2

1 < 8π , it becomes relevant in the IR limit. We recall that b2
1 = β2/3.

Therefore, the critical value for the original three-layer LSG model is β2
c = 24π . This suggest

that the critical value of the parameter which separates the two phases of LSG model with N
layers depends on the number of layers, β2

c = N8π (see figure 1). This is in agreement with
the perturbative results obtained in [15].

6. 3D-SG model

Since in the continuum limit N → ∞ the N-layer LSG model can be considered as the
discretized version of the 3D-SG model, one can clarify the previously obtained layer
dependence of the critical parameter β2

c = N8π by investigating the phase structure of
the 3D-SG model. One might expect that for N → ∞ the phase structure of the LSG model
recovers that of the 3D-SG model. The action for the 3D-SG model reads

S =
∫

d3r

[
1

2
(∂µϕ)2 + u3D cos(β3Dϕ)

]
, (43)

where β3D, u3D are the dimensionful parameters of the theory. The corresponding
dimensionless quantities are β̃2 = kβ2

3D and ũ = k−3u3D. The WH–RG approach to
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Figure 2. On the left panel, the scaling of the dimensionless coupling constant ũ(k) of the 3D-
SG model is represented graphically for various initial values for the dimensionless parameter
β̃2(� = 1) = 4π2, 12π2, 24π2, 36π2, 48π2 (from top to bottom). In the IR limit (k → 0) the
coupling constant ũ always becomes a relevant (increasing) parameter independently of β̃2(�)

which demonstrates that the 3D-SG model has a single phase in the local potential approximation.
On the right panel, the RG flow diagram of the 3D-SG model also illustrates the existence of
the single phase of the model and the infinite value of β2

c . The arrows indicate the direction of
the flow.

the 3D-SG model has been developed and discussed in [20]. Using the local potential
approximation, the dimensionless WH–RG equation reads(

3 − 1

2
ϕ̃∂ϕ̃ + k∂k

)
Ṽ k(ϕ̃) = − 1

4π2
ln

(
1 + ∂2

ϕ̃ Ṽ k(ϕ̃)
)
. (44)

The UV approximation for equation (44) can be achieved by the linearization of the logarithm
around the Gaussian fixed point and results in

(3 + k∂k)ũ(k) = 1

4π2
β̃2(k)ũ(k), k∂kβ̃

2(k) = β̃2(k). (45)

with the solution

ũ(k) = ũ(�)

(
k

�

)−3

exp

{
β̃2(�)

4π2

[(
k

�

)
− 1

]}

β̃2(k) = β̃2(�)

(
k

�

) (46)

where β̃(�) and ũ(�) are the bare values of the couplings. In the IR limit, if k → 0 the
coupling constant ũ(k) always becomes a relevant parameter (ũ → ∞) independently of β̃2

(see figure 2). Therefore, the 3D-SG model has only a single phase within the LPA.
On the one hand, in the case of the LSG model for the bulk limit (N → ∞), the critical

value which separates the two phases of the layered model becomes infinitely large
(
β2

c → ∞)
and the model has only a single phase. On the other hand, in this continuum limit, the multi-
layer model can be considered as the discretized version of the 3D-SG model which has been
shown to have a single phase, within in the local potential approximation (see figure 2 and
[20]). We conclude that the latter observation is entirely consistent with the infinite value of
β2

c in the continuum limit.

7. Summary

The phase structure of the layered sine-Gordon (LSG) model with N layers has been analysed
in terms of a non-perturbative renormalization group (RG) treatment with a sharp momentum
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cutoff. The LSG model consists of N coupled SG models each of which corresponds to a
specific layer. The coupling between the layers is described by a quadratic term which can
be considered as a mass term. All the Lagrangians studied in the paper have the general
structure (2). The case with a mass matrix that has exactly one non-vanishing mass eigenvalue
has been discussed in detail.

The LSG model has relevance both in high-energy and, perhaps even more importantly,
in low-temperature physics. The N-layer SG model is the bosonized version of the N-flavour
Schwinger model, and the double-layer SG model has been used to describe the vortex
properties of high transition temperature superconductors [11, 19].

Previously, models of this type, with up to two layers, were analysed in terms of the
Wegner–Houghton renormalization group (WH–RG) method [13, 20]. We have described
here the generalization of the RG analysis for N layers, which has allowed us to consider
the dependence of the phase structure on the number of the layers. In order to be able to
compare the results of our RG analysis to that of the perturbative treatment performed for
the LSG model [15], we have performed a rotation of the fields before applying the WH–RG
method.

It has been demonstrated that the LSG model undergoes a Kosterlitz–Thouless-type phase
transition where the critical value which separates the two phases of the model depends on the
number of layers, β2

c = N8π . Therefore, the transition ‘temperature’ in the layered case was
found to differ from a one-layer ‘pure’ sine-Gordon model. Furthermore, we have shown (see
also [15]) that this conjecture finds a natural explanation after a suitable linear transformation
of the field variables, which corresponds to a rotation in the internal space towards a frame in
which the mass matrix is diagonal.

The LSG model in the continuum limit N → ∞ has been shown to be considered as
the discretized version of the three-dimensional SG model which has a single phase within
the local potential approximation. The infinite critical value of the parameter β2

c for the LSG
model in the continuum limit is entirely consistent with the latter observation.
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